Continuous time noisy signalling

نویسنده

  • Sander Heinsalu
چکیده

Most real-life signalling is noisy and in many cases takes time. Information may be revealed gradually (many online customer reviews of a gadget) or by discrete events at random times (scientific breakthrough, oil spill, exposure of a corrupt politician). Both settings lead to behaviour different from noiseless or one-shot signalling situations. Signalling may occur in multiple disjoint intervals of beliefs. There may be no ‘most informative’ equilibrium with a signalling region that contains the signalling regions of all other equilibria. A higher prior may raise the payoff to the high type from separation relative to pooling. In noisy one-shot or repeated signalling, no signalling occurs at extreme priors, unlike in the noiseless case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noisy images edge detection: Ant colony optimization algorithm

The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy ima...

متن کامل

Synchronization of coupled noisy oscillators: Coarse graining from continuous to discrete phases.

The theoretical description of synchronization phenomena often relies on coupled units of continuous time noisy Markov chains with a small number of states in each unit. It is frequently assumed, either explicitly or implicitly, that coupled discrete-state noisy Markov units can be used to model mathematically more complex coupled noisy continuous phase oscillators. In this work we explore cond...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

An optimal instrumental variable method for continuous-time fractional model identification

this paper deals with continuous-time system identification using fractional differentiation models in a noisy output context. The simplified refined instrumental variable for continuous-time systems (srivc) is extended to fractional models. Monte Carlo simulation analysis are used to demonstrate the performance of the proposed optimal instrumental variable scheme.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013